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Introduction

The phenomenon of continuous oscillation excitation with
amplitude from discrete value set of possible stationary amplitudes [] will be ana-
lyzed numerically on the basis of a general model - a pendulum under the inhomo-
geneous action of external IIF periodic force.

In fact, we will discuss a class of systems with specific excitation - adaptive
kick-excited systems. The kick-excitation can be represented by a short, as compared
with the main period of oscillations, action of an external sine force.

The case discussed in the paper is rather a self-affined and quantitatively simi-
lar to the well-known problem examined by Fermi [2.4]. As an explanation for the
origin of cosmic rays, Fermi proposed a mechanism for charged particles to acceler-
ate by collisions with moving magnetic held structures. A great number of papers
deals with the simplest model case - the so-called model of Fermi-Past-Ulam [5-
l2l. ln the setup of Fermi-Past-Ulam scattering problem a ball is made to fly and
impact dissipatively on a signal sinusoidally vibrating surface under the influence of
the gravitational acceleration, which -hence reverses the flight. The amplitude of the
surface vibration of the cosine type and the coefficient of restitution between the ball
and the surface control the ball dynarnics.

In the recent years, the principle ability of using the Fermi mechanism for
boosting space rockets in the gravitation field ofthe planets and stars has been dis.
cussed in the literature. This is the model of a so-called "gravitational engine", ac-
celerating particles or bodies. The part of the vibrating plate may be played, for in-
stance, by the field of a rotating binary star.
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Fig. I . Illustration of the system under consid-
eration - a pendulum under the inhomoge-
neous action ofan external periodic forcer$l$
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Similar phenomena occur in other subclasses of the class of kick-excited sys-
tems, e. g. in periodically kicked hard oscillators, ice-structure interaction model,
kicked rotators, driven impact oscillators [3, l3-20].

At present the pendulum is also a widely used basic paradigm for analysis, both
theoretical and experimental, of phenomena of excitation of complex, irregular and
chaotic oscillations [3-20]. Extensive numerical and analog simulations have shown
that this simple, low dimensional system exhibits complex behaviour including fre-
quency and phase locking, intermittency and fractal basin boundaries.

The paper deals with common features in the behaviour of pendulum with in-
variable parameters in new conditions, namely the pendulum undergoes the action
of continuous periodical external constrained force, which is inhomogeneous with
respect to the coordinates of its motion.

Fig. I presents a schematic diagram of the pendulum system under consider-
ation. The deviation of the pendulum from the lower equilibrium position is denoted
by x. The external harmonic high-frequency force ,F:F^ sinvt, where F.:const, acts
in a limit zonel-d, dl of the trajectory of motion of the fendulum, which is symmet-
rically located around the lower equilibrium point. This is the meaning of the notion
"inhomogeneous action" related to the trajectory of motion of the pendulum, or the
same expressed by the notion "nonlinear harmonic force" which should be under-
stood as a nonlinear dependence of its amplitude on the coordinate of motion of the
driving system - the pendulum. The direction of aetion of the external force is par-
allel to the direction of motion of the pendulum and is periodically reversed. When,
initially, the pendulum is turned aside from the equilibrium position outside the zone
I-d, dl and is released to oscillate, it periodically passes through the zone [-d, d]and
is subject to the action of the external force F:d sinvl. At these conditions, a sta-
tionary mode of pendulum oscillation can be established with a quasi-constant am-
plitude, within one of the hatched areas of attraction in Fig. l The particular sta-
tionary amplitude of pendulum motion is determined by the initial deviation and the
initial speed (i. e. by the initial conditions). Different modes of motions are possible
for the pendulum, depending on the initial conditions: it either catches up with one
of the possible stationary orbits, or its motion is quickly damped. This is the heuristic
value of the phenomenon - the presence of a possible discrete set of stationary
amplitudes, i. e. a specific "quantizalion" of the pendulum motion by intensity as a
parameter. At the same time, there exist "forbidden" zones of initial conditions, for
which the motion is only a damped one. Obviously, there is a phenomenon of."quan-
tized" oscillation excitation, a"qtantization" of the dynamic states in a macro sys-
tem. The excitation of one amplitude or another depends on the initial conditions, at
constant other parameters and conditions. We consider that the pendulum in this
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case is b self-oscillating system with high-frequency source of power supply (in con-
trast to the common perception that the self-oscillating systems should have a d. c.
source of energy [21]).In quantum mechanics, the quantization (the nation of quan-
ta, photons, phonons, gravitons) is postulated, and in the Theory of Relativity quan-
tization is not derived by geometric considerations. At the phenomenon found, the
"quantization" of transition of energy in portions directly follows from the mecha-
nism of the processes and is formally mathematically defined. The quasiharmonic

-oscillatorobeys the classical laws to a gteatet extent than any other systems. A num-
ber of problems, related to quasiharmonic oscillators, have the same iolution in clas-
sical and quantum mechanics.

- This paper presents a general picture of the motion of the pendulum under in-
homogeneous excitation at different conditions. It is demonstrited that, due to the
character of excitation (adaptive external kicking action), maintaining quasi-period-
ic-al and quasi-regular oscillations is possible. Bifurcation characterisiicf are piesent-
ed and problems of excitation in the system of irregular and chaotic oscillations are
discussed.

Numerical experiment of exciting "quantized"
pendulum oscillations

A fascinating problem in modern dynamics is the origin of
qualitative changes in the behaviour of nonlinear physical ststems on very lon[ time
scales and th ise.

In this s 'quantized" oscillations excitation and bi-
furcation to i I simulations of the damped driven pendu-
lum emphasizing the role of the phases of attraction for different itable statei of the
dynamical system.

Generally, almost periodic oscillations are excited in the system under consid-
eration, due to the nature of excitation (the external force acti inhomogeneously:
kicking excitation).

^ .- T!t" inhomo_geneously a. c. driven, damped pendulum system is given by the
following set of three first order autonomous diffe;ential equaiions

*:

t-
(l)

j,

-2P* - sinx * e(x)d sinz,

wherex is the pendulum's angle of elevation, y : its angular velocity; the driven
dx

dt
torque is a sinusoidal torque with amplitude Fo, frequency v, and phase z : vx + g, g
is the initial phase; B is the decrement of damfing in the system; the dot denotes an

ntiation by the dimensionless time "c=a^t,where ro^is the natural
y of the pendulum for oscillation with i disappearing small am-
cy of the external periodic source is in units of oo; the v>>1. case

^ The function e(x), which derermined the nonlinearity of the external periodic
force related to the coordinate ofthe excited system is accepted to be expressed as



,G)=i;;;;1.;(2)

where the parameter d thus defines a syrnmetrical zone of action in the area of the
lower equilibrium position, d:<<1.

The Equations (1) and (2) imply that an almost symmetric solution is an almost
periodic solution with a period T which is an odd-integer multiple of the driven

pedod?n :

f : Qn+l)!, ,= I,2,3, ...

A fourth-order Runge - Kutta ,or]rrn" was employed to compute numerical
solutions of Eqs. (l). All calculations were carried out in double precision arithmetic.
The integration time step generaly was chosen to be 0,001 of the natural period. For
each cycle of computai.ions the discarding points were determined to be 500 thou-
sand and calculating points to be 250 thousand. Comparison of the analytic and
computed solutions to the linearized form of Eqs. (l) indicated that this technique
gave numerical precision of seven decimal digits over one natural cycle.

Equations (l) constitute a flow in a three-dimensional phase space with dynam-
ical variables r, y:rb and the drive phase z. The control parameters Fo and B and the

initial conditions xoand jo=? determine the pendulum's motion. Based on the

physical mechanism of e*citatiJl, which will be described in greater detail below and
which is associated with a frequency lock and phase synchronization, the frequency
v of the external driving force at the experiment should be constant. As it will be
rnade clear below, the initial phase rp plays a significant role at the adaptive mainte-
nance of the pendulum oscillations. At the same time, we take into consideration
that at the initial start of the pendulum the phase rp has an equally probable value in
the range from 0 to 2n, which means that the pendulum enters the action zone[-d, d]
of the external force at an equally probable (arbitrary) value of the initial phase g.
Once again, the meaning of the initial phase <p (its role will be explained below)
should be pointed out. The phase <p determines the state of the external driving force
at the time when the pendulum enters the action zonel-d, dl. Therefore, the phase <p

is a varying value from period to period and it plays a dominating role at the adap-
tive self-maintenance of the pendulum oscillations. In all calculations the initial val-
ue of the initial phase rp is chosen to be zero; g :eo:O. After the transition process is
completed, a regime of automatic adaptive self-adjustment of the initial phase is es-
tablished, around a value of rp,,, which is characteristic for any regime and the corre-
sponding set of parameters.

We have obtained computer solutions of Fqs. (l) and analyzed the resulting
data using three diagnostic tools: time series of the angular x and the angular veloc-
ity *, phase-plane plots (i vs. x) and bifurcation characteristics (the oscillations am-
plitude vs. the controlled parameters). The numerical solutions are obtained for,Fn
values in the range 0,1SFn<50,0, for p values of the damping in the range
0,0001<p<0,5, for dvalues inthe range 0,001<d<0,05, for fxed values of the driving
frequency v:51,0; 97,0; ... and always starting from the initial conditions

&"
lo = 7 = 0, x:vary. In all cases in order to eliminate transients, the solution were

ar
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Fig. 2. Time series of the coordinates x(a) and the velocity i(D) in steady-state stationary regime of
motion of the pendulum at the following initial conditions: xn:1,5, 1,35, 1,05 and 0,25. The values of
the rest unchanging parameters are: yo-0, .Fo:2, v-51, p-0,01, d-0,025

run through at least 1000 periods of the driving force before actual data taking was
started.

Below, we present the main results of the numerical experiment at the following
values of the parameters: p:0,01, v:51,0, Fn:2,0, d:0,025,yn:0,.rn:vary.

Figs. 2 and 3 show the time series and thd combined phase-portrdits of a station-
ary steady-state pendulum motion at four different initial conditions: xo:0,25; 1,05;
1,35; 1,5. Figure 2a shows the time series of the coordinate r and Fig.2b shows the
time series of the angular velocityrt. Both in Fig. 2b and Fig. 3 the abrupt changes of
the velocity of pendulum motion in the narrow driving zone of the external force are
clearly distinguished. By Fig. 2 and Fig. 3 we have sought to illustrate different pos-
sible regimes and cases. At an initial condition of xn:1,5, periodic oscillations are
excited, very close to the harmonic ones, with a stationary amplitude of - 1,45. The
initial condition of xn- I ,05 determines a stationary amplitude of - I ,l . In both cases
the value of the initidl condition is chosen very close to the possible ("allowed") am-
plitude values. The area of attracting related to the initial conditions for any one of
the possible stationary amplitudes (see the hatched areas in Fig. l) varies from l5olo



Fig. 3. Phase portraits of the dynamic
statc of the pendulum in steady-state
stationary motion regime for the same
initial conditions and at the same val-
ues of the remaining parameteis, as in
Fig.2
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Fig. 4. Time series of the coordinate
(a) and th transi-
tion proce tionarv
motion of e ru-',
values of , as in
Fig.2
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Fig.- 5. Phase portraits of the dynamic state of tle pendulum at the transition process of establisbing
stationary motion of the pendulum at the same values of tle rest parameters, as in Fig. 2 -

to 7o/o, with an increase of the absolute values of xn from 0,25 to 1,5, respectively.
When the initial condition is set to be between thebe areas of attracting, different
modes are possible - either the oscillations are quickly damped, or the motion is
"ttapped" and stabilized on one of the possible lower ("allowed") orbits. The latter
possibility is illustrated in Fig. 4 and Fig. 5, which present the transition processes of
establishing a stationary motion for the same 4 initial conditions as those specified
related to Fig.2 and Fig. 3. At an initial condition of xn:1,35 (clearly seen in Fig. 5)

- a value located between the "allowed" values of thd stationary amplitudes - 1,1
and - 1,45, the pendulum becomes "heavier" and passes through the possible sta-
tionary orbit with an amplitude of - l,l, then is "trapped" on an orbit with ampli-
tude - 0,75. Another feature of the presented data of the pendulum behaviour is that
while its motion around one of the orbits, with an 4mplitude of - 1,45 in this case, is
sufficiently close by its nature to the harmoni principle of motion, at the motion
around other orbits (with lower values in this case) an amplitude - two and ampli-
tude - three modulated motion may be observed. This is especially characteristic in
the case of the orbitwith amplitude-025,which is an amplitude - three motion (see
Fig. 3 and Fig. a).

As a whole, Figs. 2, 3, 4, and,5 illustrate the most important common features

ll



cO rE
d'
=

a
E

E lru
o€

A
i 0,5

E0

Fig.6. Bifurcation characteristic repersenting a dependence ofthe amplitude ofthe oscillation ofthe
pendulum on the control parameter - the amplitude of the external driving high-frequency harmonic
force at the following paramet€r values; xo:1,05, tlo:0, v:51, 9:0,01, d:0,025, Fo-vary

of the system under consideration - discretiz?tion ("quantization") of the possible
stable motions by the parameter of intensity, at which the particular amplitude of
oscillation is determined by the initial conditiorls. The occurrence of a speciflrc series
of possible stable stationary amplitudes is associated with the condition v>>1 and is
defined by the condition of locking of the phase q and phase synchronization be-
tween the motion of the pendulum and the external periodic force. The physical
mechanism of phase adaptivity and its role for the maintenance of unchanging oscil-
lations of the pendulum at a considerable change of a number of parameters and
conditions will be clarified below and in the subsequent Sections.

Fig. 6 shows a bifurcation characteristic that presents, in this case, a depen-
dence of one of the possible steady-state amplitudes of pendulum oscillations (-l,l)
on a control parameter which in the case is the value of the amplitude of the external
driving high-frequehcy harmonic force. The presence of a threshold value for the
amplitude of the driving force (-1,1) is seen, and for values above this threshold a
steady:state stationary regime of pendulum oscillations with amplitude -1,1 is real-
ized.In the range of values of Fn-[,l,2,8], i. e. when the amplitude of the external
excitation force is changed by almost 200Vo, the amplitirde of pendulum oscillations
remains practically unchanged and the motion is period - l.

This property is the second very important principle of the syst€m under con-
sideration - the independence of the steady-state stationary amplitude of pendulum
oscillation of the change of the amplitude of the external high-frequency driving
force in a wide range.

At a value of the excitation amplitude of Fn-2,
riod occurs. Amplitude - three oscillations exist u
result of a new complicated bifurcation, complex
bifurcation is preceded by a return to a quasi-periodic determinate regime, followed
by a sharp transition from quasi-periodic regime to an irregular one (such sudden
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0,5

Fig. 7. Phase portraits of the motion in the system of Fig. I at (e. F;2,77t,-(q) .F0:2,8, (c) Fo:3.2595,(d) Fo:3,26 and the same values for the rest parameters;as for Fig. b; r.:i:0'j

qualitative-changes.are usually called crises). The three specific portions of the bi-
lurcation characteristic are also illustrated in Figs. 7, g, and 9. At a value of F^:2,775

see Fig. 7a). At a minor change of the value of
shed as a result of bifurcation (see Fig.
e, without changing their nature, up to
minor increase of the value of the con-

and the oscillations in the system become

The bifurcation characteristics are of a similar nature for the remaining possi-
ble stationary- amplitudes of pendulum motion in the,,allowed,'spectrum of-Ampli-
tudes of oscillating motion.

the irregular oscillations of the pendu-
d the parameter B, which represent the
9 gives an idea of pendulum behaviour

strong external driving.

rement,p is chosen as a control pararnete€lsr*It'#iiJlt"":3t#E rtffff.TrB'f?"T;;
syj.t.e:n has. a strongly irregular nature. With the increase of the value of B, as a result
of bifurc-atio-ns,_steady-state stationary quasi-harmonic pendulum oscillations are es-
tablished, which exist over the range ofvalues of p-t0,002, 0,021. At the set value of
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Fig. 8. Time series of the coordinate x (a) and angular velocity i (b) and phase portrait (c) of the irreg-
ular motion in the system of Fig. I at (I) F0:5,190, (II), f0:5,195, (III) Fo:6,480 and (IV).Fo:6,51 and
the same values for the r€st parameters, as for Fig. 2; xoJl,O5
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Fig. 9. Time scries of the coordinate (a) and velocity (r) and_phase portrait (c) of the irregular 4oti9n
inihe system of Fig. I at (I) p-q,1 arid f-o:49 and (ff) 9:0,5 and Fo:100 and the same values for ttre

rest param€ters, as for Fig. 2; xo:1,05

the amplitudeFn:2,O,for values of 9>0,02, the pendulum oscillations mainly degen-
erate into faster-or slower damped ones.

Fig. 1l gives a general idel of the nature of the pendulum oscillations on the
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Fig, 10. Bifurcation characteristic representing the dependence ofthe amplitude cfthe pendulum os-
cillations on the value of the damping decrement p at the following parameter values: io:1,05, Jo:Q,
v:51, d:0,025, Fo:2, p-vary

Fig. I I . Illustration on the natur€ of motion in the system of Fig. I in the plane of main parameten -damping decrement p vrs amplitude ofthe external driving force f^.The hatched area oorresponds to
steady-state stationary oscillations; the dots denote the area of complicated irregular pendulum oscil-
lations

plane of basic parameters - the state diagram is given as a function of both the ex-
ternal driving amplitude F,, and the damping paramdter B. The continuous line and
the hatching define the area of parameterS that ensure stationary oscillations. For
values of parameters outside this area, the oscillations have strongly irregular nature.

The areas of parameter values corresponding to an irregular motion of the pen-
dulum (see Fig. 6 at Fn>3,26 and Fig. I I - the space filled with dots) require a very
extensive and detailedinvestigation. As it was already pointed out, the system under
consideration in Fig. 1 is relative by a number of attributes to the Fermi's problem in
the setup of Fermi - Ulan, represented by a vibrating surface, frorn which an elastic
ball is bouncing freely and is falling back by the gravitational effect. In spite of this,
there ate substantial differences in the nature of the irregular motion in the two sys-
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tems. While in the model of Fermi - Ulam the regimes of irregular motion are de-
scribed by the typicai principles of the determiriistic chaos (e. g. fractality, well
known scenaiios of transition to chaotic oscillations, etc.), our preliminary studies
of the irregular motion in the system in Fig. l, described by Eqs. (l), have shown the
following. Two main mechanisrns are "fighting" in the system under consideration -from the one hand, the adaptive nr-echanism based on phase locking and phase syn-
chronization and tending to establish determinate quasi-periodic oscillations, and,
on the other liand, a complex mechanism of occurrence of instability. The adaptive
mechanism "overcomes" in the area of determinate oscillations, and the pendulum
motion may be too complicated in the area after the critical bifurcation point. The
behaviour of the inhomogeneously forced pendulum is richer in form than shown'by
e. g. the logistic map (coexistance of different periodic motions, "intermittency" be-
tween small borinded and large attractors, combined rotational and oscillating me-
tions etc.), but typical properties like period - doubling route to chaos, existenle of
periodic windows, crises, intermittency, have been observed also in our numerical
experiments. In the last 15 years or so, much has been written on "chaos" and
"strange attractors" (irregular behaviour) of the systems of "pendulum type", see, for
example, I22,231. However, the cornplex behaviour of the system under consider-
ation defies adequate formalization in accordance with the settings known from.the
literature. The pendulum trajectories can be bounded and unbounded, the pendulum
can have steady-state behaviour that is non an equilibrium point, not periodic, and
not quasiperiodic.

When the amplitude of the external driving force Fn is a control parameter (see
Fig. 6) the following common principles are observed. At a comparatively small in-
crease ofd after the critical bifurcation point (d>3), a motion with stoiihastic char-
acter appears (the maximal displacement time series obtained by sampling the pen-
dulum displacement once per cycle is selfaffined and quantatively similar to brown-
ian motion). There only exist namow windows with period - 3, period - 7, period -
14. A characteristic attracting set in the phase space is missing. The eruptive insta-
bility, which in other systems leads to the appearance of a strange attractor, only
breaks the condition of maintenance of determinate quasi-periodic oscillations in the
syptem under consideration and leads to a breakdown ofthe synchronous input of
energy in the system. The latter is expressed in an equally probable manifestation of
wide spectra of values of the external "kick" (ftom "the weakest" to "the strongest"
influence of the external driving force), therefore the describing point can with equal
probability be located in any point of the phase space. The character of the motion
substantially depends on the value-of the damping decrement B. At small values of B
there,is a mature random process. When the value of B is increased, noticeable frac-
tal structures are possible to appear in the phase space. In some cases, the chaotic
motion abruptly terrninates, only to resume after,some "laminar time", At the same
tirne, both for values of the e critical bifurcation value
(F.t3) and at significant va areas in which the pendu-
lum oscillations generally h time constant of damping
depends on the values of the parameters B and .Fo, its value significantly increasing
with the value of ,Fn.

Theoretical stirdies and experiments on the externally forced pendulum [24]
showed that chaotic oscillations of the pendulurn are obtained after the breaking of
symmetry of oscillations. At the same time, in the system under consideration of a
pendulum under an inhomogeneous external action breaking the symmetry oscilla-
tions is, on the contrary, a necessary component of the adaptive mechanism for
maintaining determinate oscillations. With the increase of the value of the parame-
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Fig" 12. representing the dependence of the amplitude of oscillations of a"linear" de ofthe external driving high-frequency hatmonic force at the fol-
lowing p _vo:0, v:51, p=0,0t, aJO,OiS and',Fo:vary

terfo, _lhe^ir-regular oscillations of the pendulum are most often described by a "wan-
d...tng" of their amplitude, which is corresponding to a strange attractor (eiiher cha-
otic or n-onchao_tic). Strange nonchaotic attractorJ seem to be characterisiic for qua-
si-periodically forced systems, such as the system under consideration.

The inhomog
of poteutial wells.
behaviour. At rela
tions in one of the
and simultaneously "fills" the other wells, which leads to chaos at given values of the
parameter.Fo. For other values of the parameter .F^ the describing point "wanders",
vaguely-drift-s through all wells and th-e state is pre"chaotic due tJthe stabilizing ef-
fect of the-adapfive mechanjsm of phase lock and phase synchronization. In the-pro-
cess of "blurdng" around the potential wells the oscillatibns in the case under 6on.
sideration ar-e.mainly "turned around" the first, deepest potential well in the vicinity
of x-0,25, which has stronger attracting adaptive propeities due to the presence of
conditions for nonsymmetric amplitude - three modulated oscillations.
- It is interesting to compare the data stated above with the case of a "linear" pen-
dulum. In this case, the function sin x is substituted by x in the system of equations
(l).

Sq. tZ shows a bifurcation characteristic, which'in this case is a dependence of
one-of the steady-state stationary amplitudes of oscillation of the "lirlear-" pendulum
on the value of the amplitude of the external driving high-frequency harrnbnic force
fr. BV comparing it with the bifurcation char we can note the fol-
lowing. while in the nonlinear case there is a hreshold bv value of
th-e-amplitude Fo (Fo-1,1 in Fig. 6), over wh dy-state oscillations
with unchanging amllitude are excited, in the linear case (rig. l2) there is a portion
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ofvalues ofthe control param
amplitude of oscillation in the
acteristip reaches a relatively fl
tion of the "linear" the value ofF.. At the fionlinear
pendulum (Fig.6), ,l<Fn<2,8) thb amplitude of its
oscillations is prac amplitude of the external f,orce
(the external drivin tp to 20Ao/o, at which.the oscillating pro-
cess remains unchanging). The adaptive mechanisrn of self-adjustment acts less
strcngly in the case of a 'linear" pendulum. This is obvious, since the absence of
nonlinearity precludes the action of the modulation-parametric mechanism of ener-
gy input into the oscillation process, characteristic for the nonlinear case. Continu-
ing with the comparison, it is seen that in the case of a "linear" pendulum the multi:
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Fig. 13. Bifurcation characteristic representing tbe dependence ofthe amplitude ofoscillations ofa
'linear" pendulum on the amplitude ofthe external driving high-frequency harmonic force at p:0,09
(a), p10,f (b) and B:9,225 (c) and the following values of the rest parameters: xo:0,75 (a and D) and
xr:tr,05 ("), yo:0, v:51, d:0,025, I':"ary

amplitude regimes at increased values of,Fo (Fo>3,6) are much better expressed than
in the nonlinear case.

The increase of the value of the decrement B substantially softend the section of
the bifurcation characteristic described by an increase of the amplitudes of oscilla-
tion. This is illustrated in Fig. l3.It is seen that in this case the threshold value of the
amplituded and the area of stable stationary steady-state oscillations are much bet-
ter expressed. The case of a very high vah e of the parameter B shown in Fig. l3c is
described by a wide area of irregular oscillations and the steady-state stationary os-
cillations are realized at high values of the driving amplitude Fn(Fo>37).In order to
get a more full idea, fig. 14 shows a bifur :ation characteristic of thb "linear" pendu-
lum, the control parameter is the decrement of damping B, and the value of the am-
plitude of the external driving force has been chosen to be high, Fn:40. The areas of
stationary steady-state oscillations and irregular oscillations are clearly distin;
guished. At small values of the oscillations are of quasi-determinate nature, as op-
posed to the nonlinear case, where for the same values of B the oscillations are of
clearly expressed irregular nature.

Now it is time to give a more detailed explanation and illustrate,.more evidently
the adaptive mechanism of maintaining unchanging the pendulum oscillations,
which was mentioned several times in the above text. Fig. 15 shows conditionally a
period of the sinusoid of the external driving harmonic force atFn:l,l (Fig. l5a) and
Fn:2,8 (Fig. 150). The time of interaction of the pendulum with the external high-
fr-equency source is determined by the phase g, corresponding to the tirne when the
pendulum flies into the zone of driving l-d, d) and the phase 9.,,,, when it leaves the
zone. The pendulum is speeded up during the positive half p6iiod and is stopped
during the negative half period. The resulting energy absorbeQ by the pendulum is
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proportional to the double hatched area marked with the sign @ in Fig. 15. In a re-
gime of st4tionary steady-state oscillations of the pendulum its ampiitude remains
unchanged at a drastic ehange of the amplitude of the external driving force, e. g. at
a change of Fnat almost 200% within the range l,X<4<2,8 (see Fig. 6). The portion
of energy absorbed by the pendulum, delivered by thti external source, remains un-
changed at an arbitrary value within this range. This is automatically achieved due to
the adaptive change and self-adjustment of the phase <p, where the pendulum flies
into the driving zonel-d, dl. It is clearly seen from Fig. 15a that changing the ampli-
tude Fo from l,l to 2,8 causes the phase g to be changed in such a way tliat the dou-
ble hatched area with the sign @ remains unchanged (corhpare Fig. l5a and Fig.
l5b), tharefore the portion of energy input in the pendulum remains unchanged.

Consider the influence of the parameters v and d about which aimost nothing
has been said so far.

The analysis shows that the condition v>>l should be satisfied in order to ob-
tain a discrete series of steady-state amplitudes of pendulum oscillation, i. e. the fre-
quency of the external driving force should be much higher than the natural reso-
nance frequency of the pendulum. For example, in the range of values I<v<I0 and
the rest unchanging parameters, the pendulum may only have one steady-state am-
plitude of oscillation. At increased values of v a discrete series of possible steady-
state amplitudes is realized. As it was always seen, at v:51 there exist 4 steady state
stationary amplitudes of motion of the pendulum:-0,25, -0,75, -f ,1 and -t,45 (see
Figs. 2 and 3). At further increase of the value of v, the number of the stationary arn-
plitudes of motion of the pendulum is also increased. E. g., at v:97, the possible
discrete series of stationary amplitudes amounts to 9 values: -0,25, -0,43, -0,6A,
-0,75, -0,93, -1,1, -1,29, -1,33, -1,45.

Since the function e(x) was chosen to be even function of the type (2), then v
should take on odd values. Regardless that at v>>1 this condition is considerably
softened, the numerical analysis shows a significant difference of the oscillation
rnodes, e. g. at v:51 and v:50. At the numerical and theoretical analysis it is possi-
ble that the preset v to be odd. At a natural system, built on the condilions of Fig. I
and the Expr. (2) the condition v to be odd is automatically achieved, since due to
the adaptivity of the system and its non-isochronism (the frequency of pendulum os-
cillations depends on the amplitude of its oscillations) this condition corresponds to
the regime that is most favourable as related to energy input. Indeed, in order to en-
sure the stationary oscillation of the pendulum, the latter should enter the driving
zone f-d, dj, both "from the left" and "from the right", each time at the same phase
of the high-frequency driving force, differing from the preceding cycle with /n, where
/:1, 3, 5, ... Obviously the stationary oscillations of the pendulum will be excited, if
the ratio ofthe external force frequency to the pendulum oscillation frequency is a
multiple to an odd integer.

It should be particularly noted that only the precise odd integer ratio of fre-
quencies and zero deviation from the respective resonance frequency ensure sym-
metrical almost harmonic oscillations of the pendulum. When these conditions can-
not be simultaneously satisfied, nonsymmetrical regimes of oscillations of the pen-
dulum are realized. A clear example of such nonsymmetrical regime at v:51,0 is
amplitude - three oscillations of the pendulum around a value of -0,25 (see Fig. 3).

The value v:51,0 gives the ratio between the external driving force frequency
and the natural frequency of the pendulum at disappearingly small amplitudes of
oscillation. At a flrnite amplitude (e. 9.-0,25) the ratio between the external driving force
frequency and the equivalent to that amplitude resonance frequency of the pendu-
lum (this ratio will be denoted by N) is greater than .51, i. e. N>5lldue to the non-
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isochronism of the oscillations. For example, the numerical experiment shows that
freqtrency ratios N:53, 55, 57, and 59 correspond to the stationary oscillations with
amplitudes -A,25, -0,75, -1,1, and -i,45 (see Fig. 3). Only at pendulum oscillations
with amplitude -1,45 there are conditions for osciilations with a precisely odd mul-
tiplicitybf frequencies N:59. As seen from Figs. 2 and 3, in this iase the pendulum
oscillations are "purest" and closest to the harmonic ones. In the remaining cases
there is some fluctuation of the resonance frequency around the precise multiple fre-
quency. At higher values of v it is possible the more complete fulfillment of the con-
ditions; N to be an odd integer, which provides symmetrical oscillations of the pen-
dulum. For example, atv:97 the 9 steady-state amplitudes listed above are realized,
to which 9 odd multiplicities of the frequencies correspond: from N:l0l to N:l17.

The numerical analysis of the influence of the parameter d, defining the zone of
action of the external high-frequency harmonic force showed'the following. There
exist ranges of values for d, in which the possible discrete series of steady-state am-
plitudes of oscillations of the pendulum and their values remain unchanged. These
ranges ofvalues ofddepend on the frequency ofthe external driving force. For ex-
ample, in the case of v:51, the main oscillation processes and regimes of the pendu-
lum remain unchanged in the range of values for d:[0,01,0,045] and the rest un-
changing parameters. This is again possible due to the adaptivity of the system, when
the phase q; corresponding to the moment when the pendulum enters the zone of
action, is so changed that the portion of energy of the external source that is input
into the osciliating process should remain unchanged.

Conclusion

The paper presents the phenomenon of excitation of contin-
uous oscillations *ith a possible discrete set of stable amplitudes. The discussion is
performed on the basis of a model system representing a p€ndulum driven by an ex-
ternal harmonic force, which is nonlinear by the angle of its deviation. The inhomo-
geneous action ofthe external force is set by constraning the zone ofits action on a
certain small part of the trajectory of motion.

The basic properties characteizing the mechanism of "quantized" oscillation
excitation are:

(1) Excitation of oscillations of the quasieigenfrequency of the system with a set
of discrete stationary amplitudes, depending only on the initial conditions: i. e., dis-
cretion of the energy absorption processes, a specif,rc "quantization" of the ampli-
tude or intensities of the excited oscillations.

(2) The possibility for an effective division of the frequency with high rate fre-
quency of the unary transformation; Principally new is the possibility to excite oscil-
lations ofthe eigenfrequency under the action ofexternal high frequency force upon
the unperturbed linear and conservative linear and nonlinear oscillating systems.

(3) Adaptive self-control of the energy contribution in the oscillating process,
revealed as a maintenance of the amplitude values and the oscillations frequency in
the system in case of significant change of the amplitude of the external action, the
quality factor {Q-factor,load,losses), and other external actions, i. e. this is a phe-
nomenon of strong adaptive stabilization of regimes at a parameter change up to
hundreds per cent. This effect of "dynamic stabilization" can play an important role
in other, quite different physical phenomena such as quadrupole mass filters and
various types <lf plasma confinement.

The simple pendulum is a very old device, yet it is a paradigm of contemporary
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nonlinear dynamics. The equation of motion for the driven, damped pendulum mo-
dels a veriety of physical phenomena, e.g. such as radio-frequency driven Josephson
junctions and charge-density-wave transport, etc. This fact, supported by the fe-
search of a great number of scientists for centuries, allows us to speak about the in-
exhaustibility of the pendulum as a basic paladigm of nonlinear dynamics and, on
the basis of our research on the general model of a pendulum to move to generaliza-
tion such as the class of kick-excited systems. The deterministic dynamical systems
of"pendulum type", driven by external nonlinear to coordinates forces, exhibit large
families of irregular non-periodic solutions in addition to the expected and studied
harmonic ahd subharmonic motion. The physical signiflrcance of these and other ir-
regular motions which Lppear to occur in pendulum systtims apparently is to be yet
more studied and discussed.
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Kux-srs6yxAaHe Ha,,KBaHToBaIiu" Tpe[TeHItt

Btaduuup fla'ueoe, Apon Xoadeu

(P e s ro rra e)'

Ipe4cranen e rrucJrex anaJrrrs Ha cBreHnero nrs6yx4aHe Ha
TpenreHns c AucKpereH pe4 ycrofivrrBu aMrrnuryAn noA nrsAeficrnuero Ea BbEru-
na, ueannefiHa rlo xoopAlrHarara rlepuoAtrrrna ctrJra. gtcnenll.flr eKcrrepEMeHT e
HaIIpaBeH Ha ooHoBara Ha ypaBHeHrie, o[rrcBarrlo ABtrxeHuero na uaxajro. .{a4ent
ca npeMeBu cepull, cbBMecreHH oaconu uoprpertr, 6ur[ypraqnoHHr{ xapaxrepucrtr-
ru. Karo ynpaBneBarrln rrapaMerpn ca B3( Tr{ aMnnr{ryA ara*anrsurxaia sruAeficr-
Barrla cr{Jra u roeQnqneETLT Ha geUnQtpane B cEcreMara. r{ereprvrrnnpanara npo-
sBaF.a qBreHuero ce.xapaxrepngnpa c ABe BaxHU 3aKOHOMepHOCru: gncrperngaqug
(,,xdantonocr") na nrsMoxHnre y-crofiuunu aMrrnr{TyAu , iullr,aa4aurunna ycrofi-
rlllBocr IIptr 3HarInreJIHIt I{3MeHeIdnn Ha aMnJrrrryAara Ha BbHrrrHoro nrsAeficrBtre,
KarrecrBeHtrr r[axrop Ha rpenrrrrloro SBeHo rr Apyru BbHrrrH4 BrrnflHvts,. Aalena e
HarJreAHa Qnonvecxa nHTepxpera\vs:na caMoaAarrrtrBHnTe croficr.na, o6yiao"erru
or xapaKTepeu Qason lapaMerbp Ha cucreMara. HeperynrpHoro rroBeAeHr.re Ha
cvcreMara ce xaparffepv3upa cbc cJroxHa KoM[JreKcHa.Ar.rHaMnKa: neprroA - 3,7,
l4 ocqnaaqurr; Tpenrenur, nogo6xn na Epaynonoro ABHxeHr{e; panBr.rrn xaor1aqH11
TpenreHHr (4erepunnucrHrreH xaoc); ueperynrpHu ABr{xeHr{.f,, orrtrcBarrn cbc crpa-
HeH, HO He XaOTr{rreH arpaKTop n 4p. @opvlzpaldu rrpeAnoxeH eKIac caMoaAanrrrB-
Hr.r xr,rx-nrg6yArrMr{ cr{creMn.
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